Abstract

Acoustic emission (AE) study of steady and chatter mode peakless tool turning has been carried out in order to reveal an acoustic emission response to the workpiece chatter during fine turning. Molecular dynamics simulation of acoustic emission response to chatter was used to find out fundamental system characteristics. Experimental dependencies of AE signal amplitude, median frequency and power spectrum have been obtained and compared to those obtained from the molecular dynamics (MD) simulation. Both experimental and MD simulated AE signal spectral characteristics proved to be sensitive to chatter mode vibrations. Median frequency showed a drop in chatter mode cutting as well as power spectrum shifted to the low frequency range. Such a relationship has been attributed to the growing level of the system potential energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.