Abstract

A general impedance method using reduced submodels has been developed for the linear dynamic analysis of rotor systems. Formulated in terms of either modal or physical coordinates of the subsystems, the method enables imbalance responses at specific locations of the rotor systems to be efficiently determined from a small number of 'master' degrees of freedom. To demonstrate the capability of this impedance approach, the Space Shuttle Main Engine high-pressure oxygen turbopump has been investigated to determine the bearing loads due to imbalance. Based on the same formulation, an eigenvalue analysis has been performed to study the system stability. A small 5-DOF model has been utilized to illustrate the application of the method to eigenvalue analysis. Because of its inherent characteristics of allowing formulation of reduced submodels, the impedance method can significantly increase the computational speed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.