Abstract

Piezoelectric materials have a piezoelectric effect that converts mechanical energy into electrical energy. In this paper, the blades of the rotating wind turbine are simplified as flexible beams fixed on the rotating wheels, and piezoelectric ceramics are added to the beams as sensors and actuators respectively to establish an analysis model of the vibration behavior of the piezoelectric sandwich rotating wind turbine blades. Based on Newton's second law, different accelerations are added to the rotating wheel to obtain the differential equation of a vibration variable coefficient. The fourth order Runge-Kutta method is used to solve variable coefficient differential equations. The hypothetical modal method is applied to solve the displacement of the free end of the flexible beam. A numerical simulation is also carried out to analyse the magnitude and change trend of the voltage output by adding piezoelectric materials at different angular velocities. The results show that the greater the rotational angular velocity, the greater the displacement of the free end of the flexible beam, and the greater the voltage due to the piezoelectric effect of the piezoelectric material. When the rotation angular velocity reaches a stable value, the displacement of the free end and the generated voltage will also reach a stable value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call