Abstract
A method is presented for accurately determining the natural frequencies of plates having V-notches along their edges. It is based on the Ritz method and utilizes two sets of admissible functions simultaneously, which are (1) algebraic polynomials from a mathematically complete set of functions, and (2) corner functions duplicating the boundary conditions along the edges of the notch, and describing the stress singularities at its sharp vertex exactly. The method is demonstrated for free, square plates with a single V-notch. The effects of corner functions on the convergence of solutions are shown through comprehensive convergence studies. The corner functions accelerate convergence of results significantly. Accurate numerical results for free vibration frequencies and nodal patterns are tabulated for V-notched square plates having notch angle α=5° or 30° at different locations and with various notch depths. These are the first known frequency and nodal pattern results available in the published literature for rectangular plates with V-notches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.