Abstract

In this study, the characteristics of rectangular Kirchhoff nano-plate vibrations are investigated using a modified couple stress theory. To consider the effects of small-scale, the modified couple stress theory proposed by Young (2002) is used as it has only one length scale parameter. In modified couple stress theory, the strain energy density is a function of the components of the strain tensor, curvature tensor, stress tensor, and symmetric part of the couple stress tensor. After obtaining the strain energy, external work, and kinetic energy equation and inserting them in the Hamilton principle, the main and auxiliary equations of nano-plate are obtained. Then, by applying the boundary and force conditions in the governing equations, the vibrations of the rectangular Kirschhof nano-plate with the thickness are investigated with simple support around. The solution method used in this study is the Navier method and the effects of material length scale, length and thickness of the nanoplate on the vibration are investigated and the results are presented and discussed in details.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.