Abstract
In this article, the free vibration response of sandwich plates with porous electro-magneto-elastic functionally graded (MEE-FG) materials as face sheets and functionally graded carbon nanotube-reinforced composites (FG-CNTRC) as core is investigated. To this end, four-variable shear deformation refined plate theory is exploited. The properties of functionally graded material plate are assumed to vary along the thickness direction of face sheets according to modified power-law expression. Furthermore, properties of FG-CNTRC layer are proposed via a mixture rule. Hamilton’s principle with a four-variable tangential–exponential refined theory is used to obtain the governing equations and boundary conditions of plate. An analytical solution approach is utilized to get the natural frequencies of embedded porous FG plate with FG-CNTRC core subjected to magneto-electrical field. A parametric study is led to fulfill the effects of porosity parameter, external magnetic potential, external electric voltage, types of FG-CNTRC, and different boundary conditions on dimensionless frequencies of porous MEE-FG sandwich plate. It is noteworthy that the numerical consequences can serve as benchmarks for future investigations for this type of structures with porous mediums.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.