Abstract

ABSTRACTIn this article, nonlocal free vibration analysis of curved functionally graded piezoelectric (FGP) nanobeams is conducted using a Navier-type solution method. The model contains a nonlocal stress field parameter and also a nonlocal strain-electric field gradient parameter to capture the size effects. Inclusion of these nonlocal parameters introduces both stiffness-softening and stiffness-hardening effects in the analysis of curved nanobeams. Nonlocal governing equations of curved FGP nanobeam are obtained from Hamilton's principle based on the Euler–Bernoulli beam model. The results are validated with those of curved FG nanobeams available in the literature. Finally, the influences of electric voltage, length scale parameter, nonlocal parameter, opening angle, material composition, and slenderness ratio on vibrational characteristics of nanosize curved FG piezoelectric beams are explored. These results may be useful in accurate analysis and design of smart nanostructures constructed from piezoelectric materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.