Abstract

An analytical model for predicting surface effects on the free vibration of fluid-conveying nanotubes is developed based on the non-local elasticity theory. In the new model, the effects of both inner and outer surface layers on the nanotubes are taken into consideration. The results show that the surface effects with positive elastic constant or positive residual surface tension tend to increase the natural frequency and critical flow velocity. For small tube thickness or large aspect ratio, the stability of the nanotubes will be greatly enhanced due to the surface effect. This study may be useful to accurately measure the vibration characteristics of fluid-conveying nanotubes and to design nanofluidic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.