Abstract

In this paper, analysis of free vibration of carbon nanotube (CNT) reinforced functionally graded rotating cylindrical panels is presented. The analysis is performed by using the element-free kernel particle Ritz method or in short the kp-Ritz method. The rotating cylindrical panels are reinforced by single-walled carbon nanotubes (SWCNTs) with different types of distributions along thickness direction of the panels. Extended rule of mixture is selected to estimate the effective material properties of the resulting nanocomposite rotating panels. Two-dimensional displacement fields of the plates are approximated by a set of mesh-free kernel particle functions. The discretized governing eigen-equations are developed via the Ritz procedure. This kp-Ritz method enforces essential boundary conditions through the full transformation method. Detailed parametric studies have been carried out to reveal the influences of volume fraction of carbon nanotubes, edge-to-radius ratio and rotation speed on the frequency characteristics, with mode shape visualization provided. In addition, effects of different boundary conditions and types of distributions of carbon nanotubes are examined in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call