Abstract

Carbon nanotubes (CNTs) are nanomaterials with extremely favorable mass sensor properties. In this paper, we propose that CNTs under clamped boundary condition and an axial tensile load are considered as CNT-based resonators. Moreover, the resonant frequencies and frequency shifts of the CNTs with attached nanomass are investigated based on vibration analysis, which used the nonlocal Euler–Bernoulli beam model. Using the present methods, we analyze and discuss the effects of the aspect ratio, the concentrated mass and the axial force on the resonant frequency of the CNTs. The results indicate that the CNT beam under the axial tensile loads could provide higher sensitivity as nanomechanical mass sensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.