Abstract

A cable-driven parallel manipulator is a manipulator whose end-effector is driven by a number of parallel cables instead of rigid links. Since cables always have more flexibility than rigid links, a cable manipulator bears a concern of possible vibration. Thus, investigation of vibration of cable manipulators caused by cable flexibility is important for applications requiring high system stiffness or bandwidth. This paper provides a vibration analysis of general 6-DOF cable-driven parallel manipulators. Based on the analysis of the natural frequencies of the multibody system, the study demonstrates that a cable manipulator can be designed stiff enough for special applications like the cable-manipulator based hardware-in-the-loop simulation of contact dynamics. Moreover, under an excitation, a cable may vibrate not only in its axial direction, but also in its transversal direction. The paper also analyzes the vibration of cable manipulators caused by cable flexibilities in both axial and transversal directions. It is shown that the vibration of a cable manipulator due to the transversal vibration of cables can be ignored comparing to that due to the axial flexibility of cables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call