Abstract

In this paper, free vibration of a new type of tapered beam, with exponentially varying thickness, resting on a linear foundation is analyzed. The solution is based on a semi-analytical technique, the differential transform method (DTM). Applying DTM, nonlinear partial differential equations of the varying thickness beam are transformed into algebraic equations, which are then solved to obtain the solution. An Euler-Bernoulli beam with a number of boundary conditions and different exponential factor is taken into account. Results have been compared to the 4th order Runge-Kutta, and where possible with DQEM and analytical solution. These comparisons prove the preciseness of this method, based on which DTM can be considered as a powerful framework for eigenvalue analysis of new type of tapered beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.