Abstract

The main scope of this paper is both to provide an efficient formulation for deriving natural frequencies and mode shapes of a multilink flexible manipulator in an arbitrary posture and discuss the importance of introducing axial deformations along with transversal ones in the same postures. The free vibration problem is solved through a global transfer matrix formulation, which is obtained by opportunely assembling the transfer matrices of links and joints associated with the desired configuration of the robot. The formulation has been chosen in order to keep the same matrix order of the problem, regardless of the number of links of the manipulator. Manipulator links are treated as Timoshenko beams by accounting for both axial loading capability and mass/inertial effects due to the joint actuators. Numerical comparisons between the solutions derived herein and those obtained through existing formulations highlight the importance of the proposed model within the frame of multilink flexible manipulators. A forced vibration analysis is finally presented for a two-link manipulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.