Abstract
In this study, the vibration analysis of a laminated composite magnetorheological elastomer (MRE) sandwich beam is presented. The governing differential equations of motion of a sandwich beam embedding a MRE layer as core layer and laminated composite beams as the face layers are presented in a finite element formulation. The validity of the developed finite element formulation is demonstrated by comparing results in terms of the natural frequencies derived from the present finite element formulation with those in the available literature. Various parametric studies are also performed to investigate the effect of a magnetic field on the variation of the natural frequencies and loss factors of the MR elastomer composite sandwich beam under various boundary conditions. Furthermore, the effect of the thickness of the MR elastomer layer on the variation of the natural frequencies and loss factors are studied. The study suggested that the natural frequency increases with increasing magnetic field, irrespective of the boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.