Abstract

The primary aim of this study is to model and identify vibrations in mechanical systems subject to arbitrary external excitations. We propose a method based on infinite impulse response digital filter technology—termed time-frequency analysis—to analyze transient and steady-state vibrations. First, we introduce the time-frequency analysis procedure and the algorithm that implements it. Second, we analyze typical discrete signal inputs, such as impulse, sinusoidal and swept sine signals, and present time-frequency characteristics for transient and steady-state signals. Third, we apply our analysis method to the mechanical vibration behavior of a single-degree-of-freedom system subjected to various types of external excitations. The results of our analysis for steady-state vibration are verified as being equivalent to those from a Fast Fourier Transform (FFT) analysis. Moreover, the proposed analysis has the advantage over FFT analysis that we can also use it to analyze transient vibration phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.