Abstract

Damping properties of viscoelastic sandwich structure can be improved by changing some parameters such as thickness of the layers, distribution of partial treatments, slippage between layers at the interfaces, cutting and its distribution at the top and core layers. Since the optimization problem may result in a thick core layer, for achieving more accuracy a new higher-order Taylor's expansion of transverse and in-plane displacement fields is developed for the core layer of sandwich cylindrical shell in which the displacement fields at the core layer are compatibly described in terms of the displacement fields at the elastic faces. The presented model includes fewer parameters than the previously developed models and therefore decreases the number of degree of freedom in the finite element modeling. The transverse normal stress in the core layer is also considered. The formulations are developed to consider the slippage between layers at the interfaces. Finally, by combining the finite element method and the optimization algorithms based on the genetic algorithm and sequential quadratic programming technique, a design optimization methodology has been formulated to maximize the damping characteristics using the optimal number and location of cuts and partial treatments with optimal thicknesses of top and core layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call