Abstract

In this study, the active control and vibration analysis of a micro sandwich beam based on modified couple stress theory (MCST) are investigated. The core of sandwich structure is porous and the face sheets are made from piezoelectric material and reinforced by carbon nanotubes. The generalized rule of mixture is employed to predict the mechanical and electrical properties of a micro sandwich composite beam. Based on Hamilton's principle, the governing equations of motion for a micro Reddy beam are derived and active control is considered by the state space representation of the system. The results of this research show that the porosity coefficient, porosity distributions, carbon nanotubes (CNTs) volume fraction, CNTs distributions, the material length scale parameter and different face sheet and core thicknesses effect on the natural frequencies, the resonance phenomenon, settling time and deflection response of system. This research can provide a valuable background for further experimental studies as a basic investigation for applications of a micro sandwich beams in the field of micro robots. Also the results are potentially useful for active control, preventing the resonance phenomenon, design and optimization of micro sandwich beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.