Abstract

Vibration absorption efficiency of a variable-stiffness nonlinear energy sink (NES) was investigated when the main oscillator was subjected to harmonic and impulse excitations. The slow flow equations of the coupled system were derived by using the complexification-averaging method, and the nonlinear equations which describe the steady-state response were obtained. As the harmonic excitation force increased, the system which comprises constant-stiffness NES generated higher branch responses, greatly reducing the vibration absorption efficiency. The influence of nonlinear stiffness on the responses of the system was investigated. Results show that, with the increase of harmonic exciting force, a reduction of NES stiffness can eliminate the higher branch responses and even the frequency band of strongly modulated responses. The vibration absorption efficiency of variable-stiffness NES attached to the linear oscillator for different amplitudes of impulse excitation was investigated. Results show that the proper reduction of nonlinear stiffness under increasing impulse excitation can greatly increase the vibration absorption efficiency of NES, and the variable-stiffness design can effectively mitigate the negative influences of the increase of the excitation amplitude on the efficiency of constant-stiffness NES.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.