Abstract

We present a general formalism allowing for efficient numerical calculation of the production of massless scalar particles from vacuum in a one-dimensional dynamical cavity, i.e. the dynamical Casimir effect. By introducing a particular parametrization for the time evolution of the field modes inside the cavity we derive a coupled system of first-order linear differential equations. The solutions to this system determine the number of created particles and can be found by means of numerical methods for arbitrary motions of the walls of the cavity. To demonstrate the method which accounts for the intermode coupling we investigate the creation of massless scalar particles in a one-dimensional vibrating cavity by means of three particular cavity motions. We compare the numerical results with analytical predictions as well as a different numerical approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.