Abstract

Selective nucleic acid intercalating dyes--ethidium monoazide (EMA) and propidium monoazide (PMA)--represent one of the most successful recent approaches to detect viable cells (as defined by an intact cell membrane) by PCR and have been effectively evaluated in different microorganisms. However, some practical limitations were found, especially in environmental samples. The aim of this work was to show that in the application of viable real-time PCR, there may be significant biases and to propose a strategy for overcoming some of these problems. We present an approach based on the combination of three real-time PCR amplifications for each sample that should provide an improved estimation of the number of viable cells. This approach could be useful especially when it is difficult to determine a priori how to optimize methods using PMA or EMA. Although further studies are required to improve viable real-time PCR methods, the concept as outlined here presents an interesting future research direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.