Abstract

Human noroviruses are one of the leading causes of acute gastroenteritis worldwide. Based on quantitative microbial risk assessments, norovirus contributes the greatest infectious risk of any pathogen from exposure to sewage-contaminated water; however, these estimates have been based upon molecular (i.e., RNA-based) data as human norovirus has remained largely unculturable in the laboratory. Current approaches to assess the environmental fate of noroviruses rely on the use of culturable surrogate viruses and molecular methods. Human intestinal enteroids (HIEs) are an emerging cell culture system capable of amplifying viable norovirus. Here, we applied the HIE assay to assess both viable norovirus and norovirus RNA persistence in surface, tap, and deionized water microcosms. Viable norovirus decreased to below the detection limit in tap and deionized water microcosms and was measured in a single replicate in the surface water microcosm at study conclusion (28 days). Conversely, the norovirus RNA signal remained constant over the duration of the study, even when viable norovirus was below the limit of detection. Our findings demonstrate the disconnect between current environmental norovirus detection via molecular methods and viability as assessed through the HIE assay. These results imply that molecular norovirus monitoring is not inherently representative of infectious norovirus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.