Abstract
The present study analyzed the viable and/or culturable populations of Saccharomyces cerevisiae, Hanseniaspora uvarum and Starmerella bacillaris (synonym Candida zemplinina) during laboratory grape must fermentation, in order to investigate the interaction between the three species considered. Firstly, population dynamics during wine fermentation were followed by culture-dependent techniques, and non-Saccharomyces yeast became non-culturable at late stages of fermentation when S. cerevisiae dominated. Four different culture-independent techniques were further applied to detect viable yeast cells at the late stage of fermentation. Both quantitative PCR techniques applied, namely ethidium monoazide bromide (EMA)-qPCR and Reverse Transcription (RT)-qPCR, detected H. uvarum and Starm. bacillaris at a concentration of 105 to 106cells/mL. These non-culturable cells had membranes impermeable to EMA and stable rRNA. The background signals from dead cells did not interfere with the quantification of viable cells in wine samples by EMA-qPCR technique. As a qualitative culture-independent technique, DGGE technique was coupled with EMA treatment (EMA-PCR-DGGE) or with RT (RT-PCR-DGGE). With EMA-PCR-DGGE non-Saccharomyces species during fermentation were detected although it was limited by the predominance of S. cerevisiae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.