Abstract

The ability of night-migratory songbirds to sense the direction of the Earth's magnetic field is increasingly attributed to a photochemical mechanism in which the magnetic field acts on transient radical pairs in cryptochrome flavoproteins located in the birds' eyes. The magnetically sensitive species is commonly assumed to be [FAD•- TrpH•+], formed by sequential light-induced intraprotein electron transfers from a chain of tryptophan residues to the flavin adenine dinucleotide chromophore. However, some evidence points to superoxide, O2 •-, as an alternative partner for the flavin radical. The absence of hyperfine interactions in O2 •- could lead to a more sensitive magnetic compass, but only if the electron spin relaxation of the O2 •- radical is much slower than normally expected for a small mobile radical with an orbitally degenerate electronic ground state. In this study we use spin dynamics simulations to model the sensitivity of a flavin-superoxide radical pair to the direction of a 50 μT magnetic field. By varying parameters that characterize the local environment and molecular dynamics of the radicals, we identify the highly restrictive conditions under which a O2 •--containing radical pair could form the basis of a geomagnetic compass sensor. We conclude that the involvement of superoxide in compass magnetoreception must remain highly speculative until further experimental evidence is forthcoming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.