Abstract

The use of large language models (LLMs) as writing assistance for medical professionals is a promising approach to reduce the time required for documentation, but there may be practical, ethical, and legal challenges in many jurisdictions complicating the use of the most powerful commercial LLM solutions. In this study, we assessed the feasibility of using nonproprietary LLMs of the GPT variety as writing assistance for medical professionals in an on-premise setting with restricted compute resources, generating German medical text. We trained four 7-billion-parameter models with 3 different architectures for our task and evaluated their performance using a powerful commercial LLM, namely Anthropic's Claude-v2, as a rater. Based on this, we selected the best-performing model and evaluated its practical usability with 2 independent human raters on real-world data. In the automated evaluation with Claude-v2, BLOOM-CLP-German, a model trained from scratch on the German text, achieved the best results. In the manual evaluation by human experts, 95 (93.1%) of the 102 reports generated by that model were evaluated as usable as is or with only minor changes by both human raters. The results show that even with restricted compute resources, it is possible to generate medical texts that are suitable for documentation in routine clinical practice. However, the target language should be considered in the model selection when processing non-English text.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.