Abstract

The survivability of encapsulated and nonencapsulated probiotics consisting of Lactobacillus acidophilus and Lacticaseibacillus casei and the nutritional, physicochemical, and sensorial features of cottage cheese were investigated under refrigeration storage at 4 °C for 28 days. Microbeads of L. acidophilus and L. casei were developed using 2% sodium alginate, 1.5% sodium alginate and 0.5% carrageenan, and 1% sodium alginate and 1% carrageenan using an encapsulation technique to assess the probiotic viability in cottage cheese under different gastrointestinal conditions (SGF (simulated gastric juice), SIF (simulated intestinal fluid)), and bile salt) and storage conditions. Scanning electron microscopy (SEM) elucidated the stable structure of microbeads, Fourier transform infrared spectroscopy (FTIR) confirmed the presence probiotics in the microcapsules, and X-ray diffraction (XRD) demonstrated the amorphous state of microbeads. Furthermore, the highest encapsulation efficiency was observed for alginate 1% and carrageenan 1% microbeads (T3), i.e., 95%. Likewise, viability was recorded in T3 against SGF, SIF, and bile salt solution, i.e., 8.5, 8.8, and 8.9 log CFU/g at 80 min of exposure, compared to the control. The results of pH showed a significant (p < 0.05) decline that ultimately increased the titratable acidity. Nutritional analysis of cottage cheese revealed the highest levels of ash, protein, and total solids in T3, exhibiting mean values of 3.2, 22, and 43.2 g/100 g, respectively, after 28 days of storage. The sensory evaluation of cottage cheese demonstrated better color, flavor, and textural attributes in T3. Conclusively, synergistic addition of L. acidophilus and L. casei encapsulated with alginate-carrageenan gums was found to be more effective in improving the viability of probiotics in cottage cheese than noncapsulated cells while carrying better magnitudes of ash and protein, lower acidity, and pleasant taste.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.