Abstract

This study aimed to determine the viability of focal dose escalation to prostate cancer intraprostatic lesions (IPLs) from multiparametric magnetic resonance (mpMRI) and prostate-specific membrane antigen positron emission tomography (PSMA-PET) images using high-dose-rate (HDR) prostate brachytherapy (pBT). Retrospective data from 20 patients treated with HDR pBT was utilized. The interobserver contouring variability of 5 observers was quantified using the dice similarity coefficient (DSC) and mean distance to agreement (MDA). Uncertainty in propagating IPL contours to trans-rectal ultrasound (TRUS) was quantified using a tissue equivalent prostate phantom. Feasibility of incorporating IPLs into HDR pBT planning was tested on retrospective patient data. The average observer DSC was 0.65 (PSMA-PET) and 0.52 (mpMRI). The uncertainty in propagating IPL contours was 0.6 mm (PSMA-PET), and 0.4 mm (mpMRI). Uncertainties could be accounted for by expanding IPL contours by 2 mm to create IPL PTVs. The mean D98% achieved using HDR pBT was 166% and 135% for the IPL and IPL PTV contours, respectively. Focal dose escalation to IPLs identified on either PSMA-PET or mpMRI is viable using TRUS-based HDR pBT. Utilizing HDR pBT allows dose escalation of up to 166% of the prescribed dose to the prostate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call