Abstract

Swamp rabbits (Sylvilagus aquaticus) are state-endangered in Indiana, USA, and population decline has been attributed to habitat loss. We conducted pellet surveys as part of a long-term survey effort that has been conducted at approximate 10-year intervals over the last 40 years. We modeled patch occupancy and conducted a spatially-explicit population viability analysis (PVA). Although occupancy of individual patches varied over time, occupancy rate has been constant for the last 30 years, and Indiana swamp rabbits exist as a metapopulation that appears to be stable. Metapopulation dynamics were best characterized as being stationary, but area was an important factor in extinction rates; occupied patches (142±37ha) were significantly larger (P=0.01) than unoccupied patches (79±20ha). We did not find strong support for models with colonization rates as a function of distance to neighboring patches, nor was distance to contiguous patches of habitat significantly different (P=0.12) for occupied and unoccupied sites. Population viability analysis corroborated our findings based on occupancy modeling, and evaluation of the PVA model using occupancy data for the period 1985–2006 resulted in predictions that nearly matched our field observations (33% observed patch occupancy vs. 25% predicted patch occupancy). Population viability was most sensitive to reductions in survival and fecundity rates, but was otherwise robust to changes in parameters such as initial abundance and carrying capacity. Our findings provide novel insights into a poorly studied member of Sylvilagus and into species metapopulation dynamics at the edge of the range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call