Abstract
The objective of the study was to design and produce calcium alginate beads that can deliver immobilised Lactobacillus reuteri DPC16 to a target site of the colon in the gastrointestinal (GI) tract. In this study, several factors that might affect the effectiveness of calcium alginate gel beads entrapping L. reuteri DPC16 cells were investigated. An in vitro GI tract model was used to simulate the pH variation and the existence of enzymes. Firstly, by varying the concentration of alginate at a constant concentration of CaCl2 the survival of immobilised DPC16 cells in simulated gastric fluid (SGF) was observed; secondly, the physical stability of calcium alginate beads containing skim milk during sequential incubation in the GI fluids was observed using optimal concentrations of alginate; finally, the survival of DPC16 cells immobilised within alginate beads containing skim milk were compared when the beads were incubated for different times during sequential exposure to the simulated fluids. The results demonstrated that non-encapsulated DPC16 cells were sensitive to an acidic environment, and no viable cells were detected after 90 min exposure in SGF (pH 1.2). With the protection of calcium alginate gel, the survival rate of immobilised DPC16 cells was slightly improved. An alginate concentration of 4% (w/v) was the most effective of those tested, but due to the irregular shape it formed, an alginate concentration of 3% (w/v) was used in further investigations. When skim milk (8% (w/v)) was added to the alginate solution, the cell survival was improved markedly. The optimal concentration of calcium chloride was 0.3 M, because the beads maintained their integrity in SGF and simulated intestinal fluid while disintegrating in simulated colonic fluid. The beads made from 3% alginate, 8% skim milk and 0.3 M CaCl2 proved to be an effective delivery and release system for DPC16 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.