Abstract

The influence of epistatic interactions of lethal and non-lethal genes upon viability of Drosophila inversion karyotypes is poorly known. In this paper we present comparative results for viabilities of 21 originally natural O-inversion homo- and 38 heterokaryotypes in a D. subobscura population. We observed strong heterotic effect in viability of O-lethal heterozygotes irrespective of different inversion backgrounds, which indicates a mechanism for protection of a great number of lethal genes. In O-non-lethal heterozygotes the heterotic effect in viability was absent irrespective of different inversion backgrounds. Our results showed a great extent of genetic load and high abundance of O-chromosomal arrangements in the population analyzed. It belongs to the set of central European populations. An epistasis of lethal genes present in O-inversion hetero- and not present in O-inversion homokaryotypes of moderate or low frequencies could be good example for co-adaptation of chromosomal inversions with regard to the genetic load. This represents a more efficient mechanism for limitation of genetic load than alternative mechanisms for protection of lethals. Except for lethal genes, possible epistatic interactions of mildly deleterious (subvital) genes, could also be responsible for limiting the extent of genetic load in natural D. subobscura populations. We demonstrated a non-random distribution of several combinations of viability classes among different O-inversion homo- and heterokaryotypes. As a consequence of that, the viabilities of the O-inversion homokaryotypes compared to heterokaryotypes were significantly higher at low frequencies than in moderate or high frequencies. This shows frequency-dependence as a mechanism of balancing selection for protection of O-chromosomal inversions in natural D. subobscura populations. In addition, the viabilities of the O-inversion homokaryotypes of lower frequency, compared to homokaryotypes of moderate or high frequency, were significantly higher. This again indicates the existence of supergene selection as another mechanism for protection of chromosomal inversions, as co-adapted complexes in natural D. subobscura populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call