Abstract

At the end of Chapter I and in Chapter III we met open sets in ℂ n on which any holomorphic function can be extended to a larger open set. The open sets which do not have this property are called domains of holomorphy: in this chapter we study such open sets. We start by giving a characterisation of domains of holomorphy in terms of holomorphic convexity (the Cartan–Thullen theorem). We then introduce the notion of pseudoconvexity in order to get a more analytic characterisation of domains of holomorphy. This requires us to define plurisubharmonic functions. We then prove that every domain of holomorphy is pseudoconvex: the converse, which is known as the Levi problem, is studied in Chapter VII.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.