Abstract

AbstractPhotochromic (PC) ZnO nanoparticles are synthesized for the first time by using a VHF plasma enhanced CVD apparatus. The prepared ZnO film changes from transparent to PC state under UV irradiation; on being subjected to heat treatment, it changes back to transparent state. There is a threshold temperature for attaining the PC phase. The Debye-Waller factor of Zn atoms is specifically large for the PC ZnO. The ZnO nanoparticles contain carbon as impurity. The effects of C-O bonds on the ZnO crystal structure and density of states (DOS) are simulated based on density-functional theory. The results reveal that the crystal structure is slightly distorted and a sufficient DOS for PC light absorption is formed in the band gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.