Abstract

Second-harmonic generation (SHG) microscopy is a recently developed nonlinear optical imaging modality for imaging tissue structures with submicron resolution and is a potent tool for visualizing pathological effects of diseases. In this letter, we present our investigation on the influence of van Gieson's (VG) alcoholic picrofuchsin staining on SHG in type I collagen (from tendon-rich C57BL/6). Multi-channel imaging and spectra analysis show that the strong SHG signal produced in fresh collagen type I fiber has been greatly suppressed after VG staining, which indicates that staining may induce the structural or characteristic changes of SHG-dependent crystal formed by collagen constituents, such as glycine, proline, and hydroxyproline.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call