Abstract
X-ray images are an easily accessible, fast, and inexpensive method of diagnosing COVID-19, widely used in health centers around the world. In places where there is a shortage of specialist doctors and radiologists, there is need for a system that can direct patients to advanced health centers by pre-diagnosing COVID-19 from X-ray images. Also, smart computer-aided systems that automatically detect COVID-19 positive cases will support daily clinical applications. The study aimed to classify COVID-19 via X-ray images in high precision ratios with pre-trained VGG19 deep CNN architecture and the YOLOv3 detection algorithm. For this purpose, VGG19, VGGCOV19-NET models, and the original Cascade models were created by feeding these models with the YOLOv3 algorithm. Cascade models are the original models fed with the lung zone X-ray images detected with the YOLOv3 algorithm. Model performances were evaluated using fivefold cross-validation according to recall, specificity, precision, f1-score, confusion matrix, and ROC analysis performance metrics. While the accuracy of the Cascade VGGCOV19-NET model was 99.84% for the binary class (COVID vs. no-findings) data set, it was 97.16% for the three-class (COVID vs. no-findings vs. pneumonia) data set. The Cascade VGGCOV19-NET model has a higher classification performance than VGG19, Cascade VGG19, VGGCOV19-NET and previous studies. Feeding the CNN models with the YOLOv3 detection algorithm decreases the training test time while increasing the classification performance. The results indicate that the proposed Cascade VGGCOV19-NET architecture was highly successful in detecting COVID-19. Therefore, this study contributes to the literature in terms of both YOLO-aided deep architecture and classification success.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.