Abstract

Based on the variable gain extended state observer, a finite-time fault-tolerant control strategy is developed for the quadrotor unmanned aerial vehicle with actuator faults and external disturbances. Firstly, a novel variable gain extended state observer is designed to estimate the unknown external disturbances, which mitigates the initial peaking phenomenon existing in traditional extended state observer-based methods. Meanwhile, the neural networks are applied to accurately approximate unknown couplings online. Moreover, with the help of the projection operator technique, the unknown actuator faults are observed in real time. Combined with the backstepping framework, the finite-time robust fault-tolerant control scheme is constructed and the stability is strictly proved via Lyapunov’s theory. Finally, the validity of the developed control scheme is demonstrated through numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.