Abstract

Pseudomonas aeruginosa controls several genes in a cell density-dependent manner through a phenomenon termed quorum sensing. The transcriptional activator protein of the las quorum-sensing system is encoded for by the lasR gene, which is at the top of a quorum-sensing hierarchy. The activation of LasR as a transcriptional activator induces the expression of multiple genes that code for factors important for virulence, and rhlR, which encodes the transcriptional activator protein of the P. aeruginosa rhl quorum-sensing system. Elucidating the method of lasR regulation is crucial to understanding P. aeruginosa quorum sensing. In this report, we present studies on the transcriptional control of lasR. We identified two distinct transcriptional start sites for lasR that were located 201 bp (transcript T1) and 231 bp (transcript T2) upstream from the lasR start of translation. With the use of transcriptional lasRp-lacZ fusions, we showed that in P. aeruginosa, lasR expression is cell density dependent. This gene was expressed at a basal level until it was induced during the second half of log-phase growth, with expression becoming maximal during stationary-phase growth. We also showed that lasR expression was regulated through the cyclic AMP receptor protein (CRP)-binding consensus sequence in its promoter region. Our results from P. aeruginosa mutant studies and gel retardation assays indicated that this regulation was mediated by Vfr, a homolog of the Escherichia coli CRP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.