Abstract

At upcoming medium baseline reactor neutrino experiments the spallation Li-9 background will be somewhat larger than the inverse beta decay reactor neutrino signal. We use new FLUKA simulations of spallation backgrounds to optimize a class of veto strategies and find that surprisingly the optimal veto for the mass hierarchy determination has a rejection efficiency below 90%. The unrejected background has only a modest effect on the physics goals. For example Delta chi(2) for the hierarchy determination falls by 1.4 to 3 points depending on the muon tracking ability. The optimal veto strategy is essentially insensitive to the tracking ability, consisting of 2 meter radius, 1.1 second cylindrical vetoes of well tracked muons with showering energies above 3 to 4 GeV and 0.7 second full detector vetoes for poorly tracked muons above 15 to 18 GeV. On the other hand, as the uncertainty in 012 will be dominated by the uncertainty in the reactor neutrino spectrum and not statistical fluctuations, the optimal rejection efficiency for the measurement of theta(12) is 93% in the case of perfect tracking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.