Abstract

Electrical stimulation of the utricular and saccular portions of the vestibular nerve improves stability in patients suffering from vestibular dysfunction. The main objective of this study was to evaluate a new technique, vestibular response telemetry (VRT), for measuring the electrically evoked vestibular compound action potential (saccular and utricular) after stimulating the otolith organ (saccular and utricular) in adults. This study used evidence that the otolith organ can be electrically stimulated in order to develop a new vestibular implant design to improve the sensation of gravitoinertial acceleration. Four adult patients were evaluated by using a variety of measurement procedures with novel VRT software. VRT values were obtained by stimulating with three full-band Nucleus CI24RE (ST) electrodes. Specific stimuli were used. Simultaneously, electrical ocular vestibular evoked myogenic potentials (eoVEMPs) were recorded in the contralateral side. Electrically evoked compound action potentials were obtained in 10 of the 12 electrodes tested, and eoVEMPs were recorded when VRT was present. In addition to the validation of this technique, a set of default clinical test parameters was established. The VRT response morphology consisted of a biphasic waveform with an initial negative peak (N1) followed by a positive peak (P1), and latencies were typically 400 μs for N1 and 800 μs for P1. The consequences for the development of a vestibular implant for the improvement of gravitoinertial acceleration sensation are also presented. The VRT measurement technique has been shown to be a useful tool to record neural response on the otolith organ, and thus it is a convenient tool to evaluate whether the implanted electrodes provide a neural response or not. This can be used for the early development of vestibular implants to improve gravitoinertial acceleration sensation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.