Abstract
The vitamin D endocrine system is essential for calcium and bone homeostasis. Vitamin D deficits are associated with muscle weakness and osteoporosis, whereas vitamin D supplementation may improve muscle function, body sway and frequency of falls, growth and mineral homeostasis of bones. The loss of muscle strength and mass, as well as deficits in bone formation, lead to poor balance. Poor balance is one of the main causes of falls, and may lead to dangerous injuries. Here we examine balance functions in vitamin D receptor deficient (VDR−/−) mice, an animal model of vitamin D-dependent rickets type II, and in 1α-hydroxylase deficient (1α-OHase−/−) mice, an animal model of pseudovitamin D-deficiency rickets. Recently developed methods (tilting box, rotating tube test), swim test, and modified accelerating rotarod protocol were used to examine whether the absence of functional VDR, or the lack of a key vitamin D-activating enzyme, could lead to mouse vestibular dysfunctions. Overall, VDR−/− mice, but not 1α-OHase−/− mice, showed shorter latency to fall from the rotarod, smaller fall angle in the tilting box test, and aberrant poor swimming. These data suggest that VDR deficiency in mice is associated with decreased balance function, and may be relevant to poorer balance/posture control in humans with low levels of vitamin D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Steroid Biochemistry and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.