Abstract

This study was undertaken to elucidate neural control of the arterial blood pressure (ABP) in head-down postural change which causes both stimulation to the vestibular system and head-ward fluid shift. Experiments were carried out with urethane-anesthetized rabbits. The animal was mounted on a tilting table, tilted to 45 degrees head-down in 5 s, and kept at the position for 5 min. The head-down rotation (HDR) induced a transient decrease in ABP (10 +/- 3 mmHg; mean +/- SE), and then the pressure gradually recovered toward the pre-HDR level during the 5 min at the head-down position. Pretreatment with hexamethonium bromide, a ganglionic transmission blocker, suppressed the HDR-induced drop of ABP, suggesting that the ABP drop was induced by an inhibition of autonomic neural outflows. Renal sympathetic nerve activity (RSNA) decreased considerably after 1.6 +/- 0.2 s from the onset of HDR, which was followed by the ABP drop. Aortic depressor nerve activity (ADNA), an afferent for baroreceptor reflex, increased significantly during the rotation, but the peak of ADNA increase was 3.2 +/- 0.5 s after the initiation of the HDR. Therefore, the suppression of RSNA seems to be induced mainly by a quicker mechanism than baroreceptor reflex. In order to test the possibility, we examined changes in ABP and RSNA during HDR using vestibular-lesioned rabbits. In these rabbits, RSNA and ABP did not change significantly during HDR. These results suggest that vestibular organs play a role in the transient drop in ABP induced by HDR through the suppression of sympathetic nerve outflows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call