Abstract
Background. Ultrasonically activated dissectors (UADs) and radiofrequency-based devices have been considered excellent surgical devices because of their reliability and flexibility. Meanwhile, microwave-based devices have demonstrated potential with their unique heating mechanism. This study aims to compare the sealing function of a newly invented forceps-like microwave sealer (MS) with that of currently available UADs. Materials and Methods. MS and 2 examples of UADs (Harmonic Focus+ [HF+] and Sonicision [SNC]) were employed to perform mesenterectomies (in vivo) and sealing sizable vessels (ex vivo). Vessel diameter, seal time, burst pressure (BP), sealing completion, and instrument sticking were recorded. The samples underwent histological investigation for thermal damage evaluation. Results. During mesenterectomies, MS required 3seconds and 30W to secure a complete seal. The BP achieved by the MS seal was higher than that of HF+ and SNC on arteries (851 ± 203.7 vs 682.4 ± 287.3, P < .05; vs 833.1 ± 251.2mmHg, P = .4523, respectively) but was not statistically different on veins (324.9 ± 203.5 vs 460.1 ± 320.3 vs 508.3 ± 350.7mmHg, P = .215). In all trials, MS caused less sticking but exhibited similar heat-induced alterations to UADs. MS's thermal spread was not statistically more extended than that of UADs on either arteries or veins. Conclusions. MS was capable of not only sealing tiny vessels but also achieving high-pressure endurance on sizable vessels. Its forceful grasping and synchronous heating process helped create solid stumps with an acceptable thermal spread.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.