Abstract

Hydrodynamic flow in a microfluidic (MF) device offers a high-throughput platform for the continuous and controllable self-assembly of amphiphiles. However, the role of hydrodynamics on the assembly of colloidal amphiphiles (CAMs) is still not well understood. This Article reports a systematic study of the assembly of CAMs, which consist of Au nanoparticles (AuNPs) grafted with amphiphilic block copolymers, into vesicles with a monolayer of CAMs in the membranes using laminar flows in MF flow-focusing devices. Our experimental and simulation studies indicate that the transverse diffusion of solvents and colloids across the boundary of neighboring lamellar flows plays a critical role in the assembly of CAMs into vesicles. The dimension of the vesicles can be controlled in the range of 100-600 nm by tuning the hydrodynamic conditions of the flows. In addition, the diffusion coefficient of CAMs was also critical for their assembly. Under the same flow conditions, larger CAMs generated larger assemblies as a result of the reduced diffusion rate of large amphiphiles. This work could provide fundamental guidance for the preparation of nanoparticle vesicles with applications in bioimaging, drug delivery, and nano- and microreactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call