Abstract

Motor complications after chronic l-3,4-dihydroxyphenylalanine ( l-DOPA) therapy occur partly because of the sensitization to dopaminergic agents resulting from pulsatile dopaminergic stimulation. The loss of presynaptic storage contributes to short duration of action by dopamine. Vesicular monoamine transporter-2 (VMAT-2) controls intraneuronal dopamine storage by packaging dopamine into synaptic vesicles, thereby allowing exocytotic release of dopamine. Using primary fibroblast doubly transduced with VMAT-2 and aromatic l-amino acid decarboxylase (AADC) genes, we previously demonstrated the beneficial effects of such double gene transduction in the production, storage, and gradual release of dopamine in vitro and in vivo. In this study, we further evaluate the effect of achieving sustained level of dopamine within the striata by VMAT-2 gene on behavioral response of parkinsonian rats after chronic intermittent l-DOPA administration. Primary fibroblast (PF) cells were genetically modified with AADC and VMAT-2 genes. We grafted primary fibroblast cells, PF with AADC (PFAADC), or doubly transduced PF with AADC and VMAT-2 (PFVMAA) ( n = 6 for each group) into parkinsonian rat striata and administered l-DOPA (25 mg/kg/day) intermittently for 4 weeks. For behavioral study, we employed a model of akinesia using forepaw adjusting steps (FAS) that have been well characterized to reflect the effect of the lesion and the antiparkinsonian effect of dopaminergic drugs and transplants. The duration of FAS response to l-DOPA was sustained for a longer duration in rats grafted with PFVMAA cells than in those grafted with either control cells or cells with AADC alone. In PFVMAA-grafted animals, prolonged duration of FAS responses to l-DOPA was sustained even 6 weeks after discontinuation of 4-week intermittent l-DOPA treatment. These findings suggest that the restoration of dopamine storage capacity could enhance the efficacy of l-DOPA therapy and attenuate the motor fluctuations that result from chronic intermittent l-DOPA administration. The gene therapy expressing AADC and VMAT-2 along with systemic l-DOPA therapy could provide a novel treatment strategy to prevent motor fluctuations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.