Abstract
Abstract Surfactant waterflooding processes that rely on ultralow interfacial tensions suffer from surfactant retention by reservoir rock and from the need to avoid injectivity problems. New findings reported here open the possibility that by delivering the surfactant in vesicle form, more successful low-concentration, alcohol-free surfactant waterflooding processes can be designed. Basic studies of low concentration (⩽2 wt%) aqueous dispersions of lamellar liquid crystals of a model surfactant, Texas No. 1, have established the role of dispersed liquid crystallites in the achievement of ultralow tensions between oil and water. Recent work, including fast-freeze, cold-stage transmission electron microscopy (TEM), reveals that sonication both in the absence and the presence of sodium chloride converts particulate dispersions of Texas No. 1 into dispersions of vesicles, which are spheroidal bilayers or multilayers less than 0.1 µm in diameter filled with aqueous phase. Vesicles ordinarily revert only very slowly to the bulk liquid crystalline state. We find, however, that their stability depends on their preparation and salinity history, and that contact with oil can accelerate greatly the reversion of a vesiculated dispersion and enable it to produce low tensions between oil and water. Tests with Berea cores show that surfactant retention and attendant pressure buildup can be reduced greatly by sonicating Texas No. 1 dispersions to convert liquid crystallites to vesicles. In simple core-flooding experiments both the unsonicated liquid crystalline dispersions and the sonicated vesicle dispersions are able to produce substantial amounts of residual oil. We point out implications and directions for further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.