Abstract

Many psychiatric drugs are weak bases that accumulate in and are released from synaptic vesicles, but the functional impact of vesicular drug release is largely unknown. Here, we examine the effect of vesicular release of the anxiolytic antipsychotic drug cyamemazine on electrically evoked striatal dopamine responses with fast scan cyclic voltammetry. Remarkably, in the presence of nanomolar extracellular cyamemazine, vesicular cyamemazine release in the brain slice can increase dopamine responses 30-fold. Kinetic analysis and multiple stimulation experiments show that this occurs by inducing delayed emptying of the releasable dopamine pool. Also consistent with increased dopamine release, an antagonist (dihydro-β-erythroidine) implicates nicotinic acetylcholine receptors, which can directly cause dopamine release, in the vesicular cyamemazine effect. Therefore, vesicular release of cyamemazine can dramatically enhance dopaminergic synaptic transmission, possibly by recruiting an excitatory cholinergic input to induce an extra phase of release. More generally, this study suggests that synaptic drug release following vesicular accumulation by acidic trapping can expand psychiatric drug pharmacodynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.