Abstract

Programmed cell death (PCD) in many systems is controlled by relative amounts of the apoptosis-regulating proteins Bax and Bcl-2 through homo- or heterodimerization. Here we show that Bax-induced PCD of yeast was suppressed by transformation with a vesicle-associated membrane protein from Arabidopsis (AtVAMP), which was isolated by screening a cDNA expression library against sugar-induced cell death in yeast. AtVAMP expression blocked Bax-induced PCD downstream of oxidative burst. AtVAMP also prevented H(2)O(2)-induced apoptosis in yeast and in Arabidopsis cells. Reduced oxidation of lipids and plasma membrane proteins was detected in the AtVAMP-transformed yeast, suggesting improved membrane repair. Inhibition of intracellular vesicle trafficking by brefeldin A induced apoptosis from a sublethal concentration of H(2)O(2). No protection occurred by overexpression of the yeast homolog SCN2. However, efficient suppression of yeast PCD occurred by expression of a chimeric gene, composed of the conserved domains from yeast, fused to the variable N-terminal domain from Arabidopsis, resulting in exchange of the proline-rich N-terminal domain of SCN2 with a proline-poor Arabidopsis sequence. Our results suggest that intracellular vesicle traffic can regulate execution of apoptosis by affecting the rate of membrane recycling and that the proline-rich N-terminal domain of VAMP inhibited this process.

Highlights

  • Programmed cell death (PCD) in many systems is controlled by relative amounts of the apoptosis-regulating proteins Bax and Bcl-2 through homo- or heterodimerization

  • We show that Bax-induced PCD of yeast was suppressed by transformation with a vesicle-associated membrane protein from Arabidopsis (AtVAMP), which was isolated by screening a cDNA expression library against sugar-induced cell death in yeast

  • Our results suggest that intracellular vesicle traffic can regulate execution of apoptosis by affecting the rate of membrane recycling and that the proline-rich N-terminal domain of VAMP inhibited this process

Read more

Summary

Introduction

Programmed cell death (PCD) in many systems is controlled by relative amounts of the apoptosis-regulating proteins Bax and Bcl-2 through homo- or heterodimerization. We show that Bax-induced PCD of yeast was suppressed by transformation with a vesicle-associated membrane protein from Arabidopsis (AtVAMP), which was isolated by screening a cDNA expression library against sugar-induced cell death in yeast.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call