Abstract

Lipid bilayer membranes are known to form various structures such as large sheets or vesicles. When the two leaflets of the bilayer have an equal composition, the membrane preferentially forms a flat sheet or a spherical vesicle. However, a difference in the composition of the two leaflets may result in a curved bilayer or in a wide variety of vesicle shapes. Vesicles with different shapes have already been shown in experiments and diverse vesicle shapes have been predicted theoretically from energy minimization of continuous curves. Here we present a molecular dynamics study of the effect of small changes in the phospholipid headgroups on the spontaneous curvature of the bilayer and on the resulting vesicle shape transformations. Small asymmetries in the bilayers already result in high spontaneous curvature and large vesicle deformations. Vesicle shapes that are formed include ellipsoids, discoids, pear-shaped vesicles, cup-shaped vesicles, as well as budded vesicles. Comparison of these vesicles with theoretically derived vesicle shapes shows both resemblances and differences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call