Abstract

Vesicles possess unique biofilm structures and offer biomimetic advantages for drug and gene delivery. Herein, we report the spontaneous vesicle formation from ultrashort alkyl-phosphonic acids in the presence of amino acids. The aggregation characteristics and self-assembly structures of vesicles in aqueous solution were investigated by using dynamic light scattering, zeta potential, and cryo-transmission electron microscopy. We combined low-field nuclear magnetic resonance and Fourier transform infrared spectroscopy to study the H-proton-induced multilamellar vesicle formation. When we increased the molar fraction of serine, stable and closed spherical vesicles were formed at relatively low critical micelle concentrations. This transition of the self-assembled structure indicates that vesicle formation occurs when the chain length and the magnitude of the surface charge cause a fluctuation in the volume of the vesicle. Density functional theory reveals the critical role of the mixed alkyl-phosphonic acid/amino acid-enhanced electrostatic attraction between the head groups and hydrogen bonds associated with the aggregated states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call