Abstract

Myosin-V has been linked to actin-based organelle transport by a variety of genetic, biochemical and localization studies. However, it has yet to be determined whether myosin-V functions as an organelle motor. To further investigate this possibility, we conducted a biochemical and functional analysis of organelle-associated brain myosin-V. Using the initial fractionation steps of an established protocol for the purification of brain myosin-V, we isolated a population of brain microsomes that is approx. fivefold enriched for myosin-V, and is similarly enriched for synaptic vesicle proteins. As demonstrated by immunoelectron microscopy, myosin-V associates with 30-40% of the vesicles in this population. Although a majority of myosin-V-associated vesicles also label with the synaptic vesicle marker protein, SV2, less than half of the total SV2-positive vesicles label with myosin-V. The average size of myosin-V/SV2 double-labeled vesicles (90+/-45 nm) is larger than vesicles that label only with SV2 antibodies (60+/-30 nm). To determine if these vesicles are capable of actin-based transport, we used an in vitro actin filament motility assay in which vesicles were adsorbed to motility assay substrates. As isolated, the myosin-V-associated vesicle fraction was nonmotile. However, vesicles pre-treated with ice-cold 0.1% Triton X-100 supported actin filament motility at rates comparable to those on purified myosin-V. This dilute detergent treatment did not disrupt vesicle integrity. Furthermore, while this treatment removed over 80% of the total vesicle proteins, myosin-V remained tightly vesicle-associated. Finally, function-blocking antibodies against the myosin-V motor domain completely inhibited motility on these substrates. These studies provide direct evidence that vesicle-associated myosin-V is capable of actin transport, and suggest that the activity of myosin-V may be regulated by proteins or lipids on the vesicle surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.