Abstract

A family of independent $r$-sets of a graph $G$ is an $r$-star if every set in the family contains some fixed vertex $v$. A graph is $r$-EKR if the maximum size of an intersecting family of independent $r$-sets is the size of an $r$-star. Holroyd and Talbot conjecture that a graph is $r$-EKR as long as $1\leq r\leq\frac{\mu(G)}{2}$, where $\mu(G)$ is the minimum size of a maximal independent set. It is suspected that the smallest counterexample to this conjecture is a well-covered graph. Here we consider the class of very well-covered graphs $G^*$ obtained by appending a single pendant edge to each vertex of $G$. We prove that the pendant complete graph $K_n^*$ is $r$-EKR when $n \geq 2r$ and strictly so when $n>2r$. Pendant path graphs $P_n^*$ are also explored and the vertex whose $r$-star is of maximum size is determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.