Abstract

We consider the theory of very weak solutions of the stationary Stokes system with nonhomogeneous boundary data and divergence in domains of half space type, such as $\mathbb R^n_+$, bent half spaces whose boundary can be written as the graph of a Lipschitz function, perturbed half spaces as local but possibly large perturbations of $\mathbb R^n_+$, and in aperture domains. The proofs are based on duality arguments and corresponding results for strong solutions in these domains, which have to be constructed in homogeneous Sobolev spaces. In addition to very weak solutions we also construct corresponding pressure functions in negative homogeneous Sobolev spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.